توسیع و تجزیه نامساوی هیلبرت
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان
- author سمیه شهرکی
- adviser رحمت الله لشکری پور
- Number of pages: First 15 pages
- publication year 1389
abstract
در این پایان نامه با استفاده از فرمول مجموعیابی اولر-مک لورن توسیع هایی از نامساوی هیلبرت گسسته را با تفضیل بیشتر به دست می آوریم.همچنین نتایج به دست آمده از گذشته را بهبود می بخشیم و با آن چه در گذشته شناخته ایم مقایسه می کنیم همچنین با استفاده از فرمول مجموع یابی اولر-مک لورن و ضریب وزن یک جفت از نامساوی های جدید را که یک تجزیه از نامساوی هیلبرت می باشد ارایه می دهیم
similar resources
توسیع مقادیر ویژه در نامساوی بوهر
نامساوی کلاسیک بوهر بیان می کند که برای هر z,w ? c و برای هر p,q>1 با شرط 1/p+1/q=1، داریم |z+w|^2?p|z|^2+q|w|^2. واسیچ و ککیچ نسخه دیگری از این نامساوی را بیان نمودند که برای هر z_j? c و p_j>0 و r ?1، |?_(j=1)^m?z_j |^r ? (?_(j=1)^m??p_j?^(1/(r-1)) )^(r-1) ?_(j=1)^m?p_j |z_j |^r. در این پایان نامه، تعمیم ماتریسی این نسخه از نامساوی بوهر را به کمک نامساوی های احاطه سازی ضعیف، مقادی...
15 صفحه اولنامساوی های شعاع اقلیدسی در فضای هیلبرت
هدف از این پایان نامه بررسی انواع کران های بالا برای شعاع اقلیدسی عملگرهای خطی کران دار n تایی روی فضای هیلبرت است. که این کار با بکارگیری چند تعمیم از نامساوی بسل مانند نامساوی بوس بلمن و بومبری است همچنین درباره نرم و شعاع عددی عملگرهای خطی کران دار n تایی روی فضای هیلبرت بحث می کنیم
15 صفحه اولنامساوی مثلثی در *c-مدول های هیلبرت
در این پایان نامه، نشان می دهیم اگر $x,y$ اعضای $c^*$-مدول هیلبرت باشند، آنگاه نامساوی مثلثی $|x+y|leq |x|+|y|$ لزوما برقرار نیست. ثابت می کنیم که برای هر دو عنصر $x,y$ در $c^*$-مدول هیلبرت $v$ روی $c^*$-جبر $mathcal{a}$, تساوی مثلثی برقرار است اگر و تنها اگر $langle x,y angle =|x|: |y|$. به علاوه اگر $mathcal{a}$ دارای عضو همانی $e$ باشد، آنگاه برای هر $x,yin v...
نامساوی های شعاع اقلیدوسی در فضای هیلبرت
هدف از این پایان نامه بررسی انواع کران های بالا برای شعاع اقلیدسی عملگرهای خطی کران دار n تایی روی فضای هیلبرت است. این کار با بکارگیری چند تعمیم از نامساوی بسل مانند نامساوی بواس-بلمن و بومبری است. همچنین درباره نرم و شعاع عددی عملگرهای خطی کران دار nتایی روی فضای هیلبرت بحث می کنیم.
نامساوی هایی درمورد عملگرهای نرمال درفضاهای هیلبرت
چکیده:دراین پایان نامه ،ابتدابه مطالعه وبررسی برخی ازنامساوی هابرای عملگرهای خطی کران دارنرمال والحاقی های آن ها درفضای هیلبرت مختلط بااستفاده ازروش های کلاسیک ونوین منسوب به افرادی مانند:بوزانو،دراگمیر،هیل،دانکل-ویلیامز،گلدشتاین ودیگرنویسندگان می پردازیم.همچنین برخی خواص مربوط به بردعددی عملگرهای نرمال مانندشعاع عددی وشعاع طیفی رابیان کرده ونکاتی رادرموردآن هاذکرمی کنیم.یکی ازاساسی ترین وکاربر...
My Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023